
pmid: 21316617
The shape memory nickel-titanium alloy has been applied in many fields due to its unique thermal and mechanical performance. One of the successful applications of NiTi wires is in orthodontics because of its good characteristics such as low stiffness, high spring back, high stored energy, biocompatibility, superelasticity and shape memory effect. The mechanical properties of wires are paid special attention which results in achieving continuous optimal forces and eventually causing rapid tooth movement without any damage. The behavior of the alloy can be controlled by chemical composition and thermo-mechanical treatment during the manufacturing process. In this study two kinds of commercial superelastic NiTi archwires of 0.41 mm diameter were investigated: Copper NiTi and Highland Metal. The chemical analysis of both wires was estimated by energy dispersive spectroscopy (EDS). It was showed that Copper NiTi wire contained copper and chromium. The two types of wires were exposed to different heat treatment conditions at 400 and 500 °C for 10 and 60 min to compare the behavior of the wires at aged and as-received conditions. Phase transformation temperatures clarified by differential scanning calorimetry (DSC) showed B2 R B19 transformation in Highland Metal wire and B2 B19(') transformation in Copper NiTi wire. Three point bending (TPB) tests in the certain designed fixture were performed at 37 °C to evaluate the mechanical behavior of the wires. The experimental results revealed the superelastic behavior of the Highland Metal wire after 60 min ageing at 400 and 500 °C and the plastic deformation of the Copper NiTi wire after annealing due to the effect of copper in the alloy composition.
Titanium, Hot Temperature, Nickel, Materials Testing, Orthodontic Wires, Stress, Mechanical, Copper, Mechanical Phenomena
Titanium, Hot Temperature, Nickel, Materials Testing, Orthodontic Wires, Stress, Mechanical, Copper, Mechanical Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
