
pmid: 33123813
A base amount-dependent fluorescence enhancement-based strategy is put forward to determine vascular endothelial growth factor 165 (VEGF165) in human serum by the use of hairpin DNA-silver nanoclusters (hDNA-AgNCs) and oxidized carbon nanoparticles (CNPs). The hDNA-AgNCs aptasensing probe consists of AgNCs-contained hairpin loop (that generates a fluorescence signal), hairpin stem (that makes the structure stable), and the terminal aptamer 1 (that recognizes the target together with aptamer 2). It has been demonstrated that the fluorescence intensity of hDNA-AgNCs is ~ 3-fold stronger than that of single-stranded DNA-AgNCs (ssDNA-AgNCs), and hDNA-AgNCs have a strong dependence of fluorescence enhancement on the base amount in hairpin stem and loop. Upon the addition of oxidized CNPs, the terminal aptamer 1 of hDNA-AgNCs can adsorb onto the surface of oxidized CNPs via π-π stacking, and the fluorescence of hDNA-AgNCs (with excitation/emission maxima at 490/567 nm) is quenched via fluorescence resonance energy transfer (FRET). When aptamer 2 and VEGF165 are subsequently added, aptamer 1, VEGF165, and aptamer 2 reassemble into an intact tertiary structure, and the fluorescence is recovered because hDNA-AgNCs are far away from the surface of oxidized CNPs and the FRET efficiency decreases. Under the optimized conditions, the aptasensing probe can selectively assay VEGF165 with a detection limit of 14 pM. The results provide a label-free and sensitive method to monitor VEGF165 in human serum. Schematic representation of the strong dependence of fluorescence enhancement on base amount in stem and loop of hairpin DNA-silver nanoclusters. The probe can be used to assay vascular endothelial growth factor 165 (VEGF165) and give a judgment whether human serum VEGF165 is at a normal or abnormal level for clinical diagnosis.
Ovarian Neoplasms, Serum, Vascular Endothelial Growth Factor A, Silver, Metal Nanoparticles, Sensitivity and Specificity, Spectrometry, Fluorescence, Humans, Protein Isoforms, Female
Ovarian Neoplasms, Serum, Vascular Endothelial Growth Factor A, Silver, Metal Nanoparticles, Sensitivity and Specificity, Spectrometry, Fluorescence, Humans, Protein Isoforms, Female
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
