Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncology Research Fe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distinct DNA Methylation Profiles Between Adenocarcinoma and Squamous Cell Carcinoma of Human Uterine Cervix

Authors: Eun-Ju Lee; Michael McClelland; Yipeng Wang; Je Ho Lee; Sang-Ho Choi; Fred Long;

Distinct DNA Methylation Profiles Between Adenocarcinoma and Squamous Cell Carcinoma of Human Uterine Cervix

Abstract

Alterations in DNA methylation offer unique prospects as tumor markers. The big limitation in cervical cancer research is that it is too hard to obtain the pure normal tissue from a cervical cancer mass. So, we first profile type-specific DNA methylation of major two types of human uterine cervical cancer, adenocarcinoma (ACA) and squamous cell carcinoma (SCC), to establish a precise source of marker research. To assess the DNA methylation status of promoter regions in human uterine cervical ACAs and SCCs, fresh frozen tissues were obtained from bulky tumor masses to minimize the contamination from normal tissues and two array platforms using digestion with methylation-sensitive restriction-enzyme HpaII, ligation, and PCR were performed: an array of 11,994 (approximately 1.5 kb) PCR products from 10,445 promoter regions, and an array of 355,264 oligonucleotides for 18,212 HpaII fragments in 12,617 promoter regions. Loci near 21 genes showed significant differences between six ACA and four SCC from the analysis of two array data. Real-time PCR-based validation was performed on 13 loci using other nearby candidate methylation targets in the same promoter. Methylation patterns of 11 of 13 linked loci concurred with the microarray results. Four loci were further studied using tissues from additional patients (23 ACA and 24 SCC). Hypermethylation of loci in PAK6 and NOGOR most strongly correlated with ACA. Therefore, we have identified the 21 genes with differential methylation pattern between ACA and SCC and, furthermore, we found that PAK6 and NOGOR could be useful markers of ACA to be distinct from SCC.

Related Organizations
Keywords

Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Uterine Cervical Neoplasms, DNA, Neoplasm, Adenocarcinoma, DNA Methylation, Biomarkers, Tumor, Carcinoma, Squamous Cell, Humans, Female, RNA, Messenger, Promoter Regions, Genetic, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
gold