
doi: 10.3390/en14010140
This paper proposes a high-performance control technique based on Lyapunov’s stability theory for a single-phase grid-connected neutral-point-clamped quasi-impedance source inverter with LCL filter. The Lyapunov function based control is employed to regulate the inverter output current, whereas the proportional resonant controller is used to produce the reference of the inverter output current that is needed in the Lyapunov function based control. Use of proportional resonant controller ensures the zero steady-state error in the grid current. An important feature of the proposed Lyapunov function based control is the achievement of resonance damping without using a dedicated damping method. Furthermore, the modified simple boost control technique is proposed to eliminate the double-line frequency ripples in the quasi-impedance source inductor currents and minimize the double-line frequency ripples in the quasi-impedance source capacitor voltages. The proposed control technique considerably reduces the inverter size, weight, and cost as well as increases overall system efficiency since the required inductances and capacitances sizes are lower. Experimental results obtained from a 2.5 kW neutral-point-clamped quasi-impedance source inverter prototype are presented to validate the performance of the Lyapunov function based control technique.
Technology, nonlinear controller, proportional resonant control, T, Lyapunov stability, grid-connected inverter
Technology, nonlinear controller, proportional resonant control, T, Lyapunov stability, grid-connected inverter
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
