Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Leukocyte Biology
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mycobacterium tuberculosisRpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells

Authors: Hwa-Jung Kim; Jong Seok Kim; Jong-Hwan Park; Han Gyu Choi; Byungki Jang; Sang Nae Cho; Keehoon Lee; +3 Authors

Mycobacterium tuberculosisRpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells

Abstract

ABSTRACTThe failure of Mycobacterium bovis BCG as a TB vaccine against TB reactivation suggests that latency-associated proteins should be included in alternative TB vaccine development. Further, antigens known to generate protective immunity against the strong Th1 stimulatory response to reactivated TB should be included in novel vaccine design. Recent studies have emphasized the importance of Rpfs from Mycobacterium tuberculosis in the reactivation process and cellular immunity. However, little is known about how RpfB mediates protective immunity against M. tuberculosis. Here, we investigated the functional roles and signaling mechanisms of RpfB in DCs and its implications in the development of T cell immunity. DCs treated with RpfB displayed features of mature and functional status, with elevated expression of cell surface molecules (CD80, CD86, and MHC class I and II) and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IL-12p70). Activation of DCs was mediated by direct binding of RpfB to TLR4, followed by MyD88/TRIF-dependent signaling to MAPKs and NF-κB signaling pathways. Specifically, we found that the RpfB G5 domain is the most important part in RpfB binding to TLR4. RpfB-treated DCs effectively polarized naïve CD4+ and CD8+ T cells to secrete IFN-γ and IL-2. Importantly, RpfB induced the expansion of memory CD4+/CD8+CD44highCD62Llow T cells in the spleen of M. tuberculosis-infected mice. Our data suggest that RpfB regulates innate immunity and activates adaptive immunity through TLR4, a finding that may help in the design of more effective vaccines.

Related Organizations
Keywords

CD8-Positive T-Lymphocytes/metabolism, CD4-Positive T-Lymphocytes, Bacterial Proteins/metabolism*, CD8-Positive T-Lymphocytes, GATA-3, CD8-Positive T-Lymphocytes/cytology, Cell Differentiation/immunology, Cellular/immunology*, Mice, Sequence Deletion/genetics, Toll-Like Receptor 2/metabolism, Immunity, Cellular, Cell Death, Th1 Cells/cytology, Cytokines/metabolism, NF-kappa B, Cell Differentiation, Phenotype, Cytokines, Th1 Cells/immunology*, Female, Mitogen-Activated Protein Kinases, Mitogen-Activated Protein Kinases/metabolism, Protein Binding, 570, 610, Dendritic Cells/cytology, T-bet, CD4-Positive T-Lymphocytes/cytology, Bacterial Proteins, Neutralization Tests, Animals, CD4-Positive T-Lymphocytes/metabolism, Signal Transduction/immunology, Endotoxins/metabolism, Immunity, Reproducibility of Results, Dendritic Cells, Mycobacterium tuberculosis, Mycobacterium tuberculosis/immunology*, Toll-Like Receptor 4/metabolism*, Endotoxins, Enzyme Activation, NF-kappa B/metabolism, Dendritic Cells/immunology*, Vaccine, Immunologic Memory

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Green
bronze