<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ABSTRACT The Hsp90 chaperone cycle catalyzes the final activation step of several important eukaryotic proteins (Hsp90 “clients”). Although largely a functional form of Hsp90, an Hsp90-Gal4p DNA binding domain fusion (Hsp90-BD) displays no strong interactions in the yeast two-hybrid system, consistent with a general transience of most Hsp90-client associations. Strong in vivo interactions are though detected when the E33A mutation is introduced into this bait, a mutation that should arrest Hsp90-client complexes at a stage where the client is stabilized, yet prevented from attaining its active form. This E33A mutation stabilized the two-hybrid interactions of the Hsp90-BD fusion with ∼3% of the Saccharomyces cerevisiae proteome in a screen of the 6,000 yeast proteins expressed as fusions to the Gal4p activation domain (AD). Among the detected interactors were the two stress-activated mitogen-activated protein (MAP) kinases of yeast, Hog1p and Slt2p (Mpk1p). Column retention experiments using wild-type and mutant forms of Hsp90 and Slt2p MAP kinase, as well as quantitative measurements of the effects of stress on the two-hybrid interaction of mutant Hsp90-BD and AD-Slt2p fusions, revealed that Hsp90 binds exclusively to the dually Thr/Tyr-phosphorylated, stress-activated form of Slt2p [(Y-P,T-P)Slt2p] and also to the MAP kinase domain within this (Y-P,T-P)Slt2p. Phenotypic analysis of a yeast mutant that expresses a mutant Hsp90 (T22I hsp82 ) revealed that Hsp90 function is essential for this (Y-P,T-P)Slt2p to activate one of its downstream targets, the Rlm1p transcription factor. The interaction between Hsp90 and (Y-P,T-P)Slt2p, characterized in this study, is probably essential in this Hsp90 facilitation of the Rlm1p activation by Slt2p.
QD0415, 570, Saccharomyces cerevisiae Proteins, Heat shock protein, Proteome, C700 - Molecular biology, biophysics & biochemistry, DNA, Saccharomyces cerevisiae, Microbiology, C500 Microbiology, QH0426, Caffeine, Two-Hybrid System Techniques, C700 Molecular Biology, Biophysics and Biochemistry, Mutation, C500 - Microbiology, HSP90 Heat-Shock Proteins, Mitogen-Activated Protein Kinases, Phosphorylation
QD0415, 570, Saccharomyces cerevisiae Proteins, Heat shock protein, Proteome, C700 - Molecular biology, biophysics & biochemistry, DNA, Saccharomyces cerevisiae, Microbiology, C500 Microbiology, QH0426, Caffeine, Two-Hybrid System Techniques, C700 Molecular Biology, Biophysics and Biochemistry, Mutation, C500 - Microbiology, HSP90 Heat-Shock Proteins, Mitogen-Activated Protein Kinases, Phosphorylation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 162 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |