Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Microbiology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Microbiology and Biotechnology
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Microbiology and Biotechnology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity

Authors: Xuewen Zhang; Hans Leemhuis; Štefan Janeček; Mária Martinovičová; Tjaard Pijning; Marc J.E.C. van der Maarel;

Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity

Abstract

AmyC, a glycoside hydrolase family 57 (GH57) enzyme of Thermotoga maritima MSB8, has previously been identified as an intracellular α-amylase playing a role in either maltodextrin utilization or storage polysaccharide metabolism. However, the α-amylase specificity of AmyC is questionable as extensive phylogenetic analysis of GH57 and tertiary structural comparison suggest that AmyC could actually be a glycogen-branching enzyme (GBE), a key enzyme in the biosynthesis of glycogen. This communication presents phylogenetic and biochemical evidence that AmyC is a GBE with a relatively high hydrolytic (α-amylase) activity (up to 30% of the total activity), creating a branched α-glucan with 8.5% α-1,6-glycosidic bonds. The high hydrolytic activity is explained by the fact that AmyC has a considerably shorter catalytic loop (residues 213-220) not reaching the acceptor side. Secondly, in AmyC, the tryptophan residue (W 246) near the active site has its side chain buried in the protein interior, while the side chain is at the surface in Tk1436 and Tt1467 GBEs. The putative GBEs from three other Thermotogaceae, with very high sequence similarities to AmyC, were found to have the same structural elements as AmyC, suggesting that GH57 GBEs with relatively high hydrolytic activity may be widespread in nature.

Country
Netherlands
Keywords

EXPRESSION, Models, Molecular, PURIFICATION, Sequence Homology, Amino Acid, Protein Conformation, ISOAMYLASE, Hydrolysis, SPECIFICITIES, GENE, FAMILY, 1,4-alpha-Glucan Branching Enzyme, Thermotoga maritima, alpha-Amylases, Biotechnologically Relevant Enzymes and Proteins, SEQUENCE; CLONING, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
hybrid