Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cosmetic Science
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Clermont Université
Article . 2020
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2020
License: CC BY
Data sources: HAL INRAE
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characteristics of healthy and androgenetic alopecia scalp microbiome: Effect of Lindera strychnifolia roots extract as a natural solution for its modulation

Authors: E. Filaire; A. Dreux; C. Boutot; E. Ranouille; J. Y. Berthon;

Characteristics of healthy and androgenetic alopecia scalp microbiome: Effect of Lindera strychnifolia roots extract as a natural solution for its modulation

Abstract

AbstractObjectiveThe human scalp harbours a vast community of microbiotal mutualists. Androgenetic alopecia (AGA), the most common form of hair loss in males, is a multifactorial condition involving genetic predisposition and hormonal changes. The role of microflora during hair loss remains to be understood. After having characterized the scalp microbiota of 12 healthy male subjects and 12 AGA male subjects (D0), the aim of this investigation was to evaluate the capacity of Lindera strychnifolia root extract (LsR) to restore a healthy bacterial and fungal scalp microflora after 83 days (D83) of treatment.Material and methodsThe strategy used was based on high‐throughput DNA sequencing targeting the encoding 16S ribosomal RNA for bacteria and Internal Transcribed Spacer 1 ribosomal DNA for fungi.ResultsTest analysis of relative abundance comparing healthy and AGA subjects showed a significant increase of Cutibacterim acnes (P < 0.05) and Stenotrophomonas geniculata (P < 0.01) in AGA subjects. AGA scalp condition was also associated with a significant (P < 0.05) decrease of Staphylococcus epidermidis relative abundance. A lower proportion of Malassezia genus in samples corresponding to AGA scalps and an increase of other bacterial genera (Wallemia, Eurotium) were also noted. At the species level, mean relative abundance of Malassezia restricta and Malassezia globosa were significantly lower (P < 0.05) in the AGA group. Eighty‐three days of treatment induced a significant decrease in the relative abundance of C. acnes (P < 0.05) and S. geniculata (P < 0.01). S. epidermidis increased significantly (P < 0.05). At the same time, LsR treatment induced a significant increase in the proportion of M. restricta and M. globosa (P < 0.05).ConclusionData from sequencing profiling of the scalp microbiota strongly support a different microbial composition of scalp between control and AGA populations. Findings suggest that LsR extract may be a potential remedy for scalp microbiota re‐equilibrium.

Keywords

Male, [SDV]Life Sciences [q-bio], 610, Plant Roots, Cutibacterim acnes, 616, Humans, Malassezia, scalp microbiota, Scalp, Bacteria, Plant Extracts, Microbiota, microbiology, Fungi, Alopecia, Middle Aged, Lindera, hair treatment, [SDV] Life Sciences [q-bio], Lindera strychnifoliaroots extract, Staphylococcus epidermidisratio

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!