
Myotonic dystrophy type 1 (DM1) is an autosomal dominant, CTG•CAG microsatellite expansion disease. Expanded CUG repeat RNA sequester the muscleblind-like (MBNL) family of RNA-binding proteins, thereby disrupting their normal cellular function which leads to global mis-regulation of RNA processing. Previously, the small molecule furamidine was shown to reduce CUG foci and rescue mis-splicing in a DM1 HeLa cell model and to rescue mis-splicing in the HSALR DM1 mouse model, but furamidine's mechanism of action was not explored. Here we use a combination of biochemical, cell toxicity, and genomic studies in DM1 patient-derived myotubes and the HSALR DM1 mouse model to investigate furamidine's mechanism of action. Mis-splicing rescue was observed in DM1 myotubes and the HSALR DM1 mouse with furamidine treatment. Interestingly, while furamidine was found to bind CTG•CAG repeat DNA with nanomolar affinity, a reduction in expanded CUG repeat transcript levels was observed in the HSALR DM1 mouse but not DM1 patient-derived myotubes. Further investigation in these cells revealed that furamidine treatment at nanomolar concentrations led to up-regulation of MBNL1 and MBNL2 protein levels and a reduction of ribonuclear foci. Additionally, furamidine was shown to bind CUG RNA with nanomolar affinity and disrupted the MBNL1 -CUG RNA complex in vitro at micromolar concentrations. Furamidine's likely promiscuous interactions in vitro and in vivo appear to affect multiple pathways in the DM1 mechanism to rescue mis-splicing, yet surprisingly furamidine was shown globally to rescue many mis-splicing events with only modest off-target effects on gene expression in the HSALR DM1 mouse model. Importantly, over 20% of the differentially expressed genes were shown to be returned, to varying degrees, to wild-type expression levels.
Antifungal Agents, RNA Splicing, Muscle Fibers, Skeletal, RNA-Binding Proteins, Benzamidines, Disease Models, Animal, Mice, Animals, Humans, Myotonic Dystrophy, RNA, Cells, Cultured
Antifungal Agents, RNA Splicing, Muscle Fibers, Skeletal, RNA-Binding Proteins, Benzamidines, Disease Models, Animal, Mice, Animals, Humans, Myotonic Dystrophy, RNA, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
