Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/gmd-20...
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://gmd.copernicus.org/art...
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated geological map deconstruction for 3D model construction

Authors: Mark Jessell; Vitaliy Ogarko; Mark Lindsay; Ranee Joshi; Agnieszka Piechocka; Lachlan Grose; Miguel de la Varga; +2 Authors

Automated geological map deconstruction for 3D model construction

Abstract

Abstract. We present two Python libraries (map2loop and map2model) which combine the observations available in digital geological maps with conceptual information, including assumptions regarding the subsurface extent of faults and plutons to provide sufficient constraints to build a reasonable 3D geological model. At a regional scale, the best predictor for the 3D geology of the near-subsurface is often the information contained in a geological map. This remains true even after recognising that a map is also a model, with all the potential for hidden biases that this model status implies. One challenge we face is the difficulty in reproducibly preparing input data for 3D geological models. The information stored in a map falls into three categories of geometric data: positional data such as the position of faults, intrusive and stratigraphic contacts; gradient data, such as the dips of contacts or faults and topological data, such as the age relationships of faults and stratigraphic units, or their adjacency relationships. This work is being conducted within the Loop Consortium, in which algorithms are being developed that allow automatic deconstruction of a geological map to recover the necessary positional, gradient and topological data as inputs to different 3D geological modelling codes. This automation provides significant advantages: it reduces the time to first prototype models; it clearly separates the primary data from subsets produced from filtering via data reduction and conceptual constraints; and provides a homogenous pathway to sensitivity analysis, uncertainty quantification and Value of Information studies. We use the example of the re-folded and faulted Hamersley Basin in Western Australia to demonstrate a complete workflow from data extraction to 3D modelling using two different Open Source 3D modelling engines: GemPy and LoopStructural.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid