
arXiv: 1605.06709
Let $(X,d)$ be a metric space. A set $S\subseteq X$ is said to be a $k$-metric generator for $X$ if and only if for any pair of different points $u,v\in X$, there exist at least $k$ points $w_1,w_2, \ldots w_k\in S$ such that $d(u,w_i)\ne d(v,w_i),\; \mbox{\rm for all}\; i\in \{1, \ldots k\}.$ Let $\mathcal{R}_k(X)$ be the set of metric generators for $X$. The $k$-metric dimension $\dim_k(X)$ of $(X,d)$ is defined as $$\dim_k(X)=\inf\{|S|:\, S\in \mathcal{R}_k(X)\}.$$ Here, we discuss the $k$-metric dimension of $(V,d_t)$, where $V$ is the set of vertices of a simple graph $G$ and the metric $d_t:V\times V\rightarrow \mathbb{N}\cup \{0\}$ is defined by $d_t(x,y)=\min\{d(x,y),t\}$ from the geodesic distance $d$ in $G$ and a positive integer $t$. The case $t\ge D(G)$, where $D(G)$ denotes the diameter of $G$, corresponds to the original theory of $k$-metric dimension and the case $t=2$ corresponds to the theory of $k$-adjacency dimension. Furthermore, this approach allows us to extend the theory of $k$-metric dimension to the general case of non-necessarily connected graphs.
05C12, 05C76, 54E35, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
05C12, 05C76, 54E35, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
