Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The k-metric dimension of graphs: a general approach

Authors: Estrada-Moreno, A.; Yero, I. G.; Rodriguez-Velazquez, J. A.;

The k-metric dimension of graphs: a general approach

Abstract

Let $(X,d)$ be a metric space. A set $S\subseteq X$ is said to be a $k$-metric generator for $X$ if and only if for any pair of different points $u,v\in X$, there exist at least $k$ points $w_1,w_2, \ldots w_k\in S$ such that $d(u,w_i)\ne d(v,w_i),\; \mbox{\rm for all}\; i\in \{1, \ldots k\}.$ Let $\mathcal{R}_k(X)$ be the set of metric generators for $X$. The $k$-metric dimension $\dim_k(X)$ of $(X,d)$ is defined as $$\dim_k(X)=\inf\{|S|:\, S\in \mathcal{R}_k(X)\}.$$ Here, we discuss the $k$-metric dimension of $(V,d_t)$, where $V$ is the set of vertices of a simple graph $G$ and the metric $d_t:V\times V\rightarrow \mathbb{N}\cup \{0\}$ is defined by $d_t(x,y)=\min\{d(x,y),t\}$ from the geodesic distance $d$ in $G$ and a positive integer $t$. The case $t\ge D(G)$, where $D(G)$ denotes the diameter of $G$, corresponds to the original theory of $k$-metric dimension and the case $t=2$ corresponds to the theory of $k$-adjacency dimension. Furthermore, this approach allows us to extend the theory of $k$-metric dimension to the general case of non-necessarily connected graphs.

Keywords

05C12, 05C76, 54E35, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green