
pmid: 11700289
▪ Abstract Genetic screens in Drosophila melanogaster have helped elucidate the process of axis formation during early embryogenesis. Axis formation in the D. melanogaster embryo involves the use of two fundamentally different mechanisms for generating morphogenetic activity: patterning the anteroposterior axis by diffusion of a transcription factor within the syncytial embryo and specification of the dorsoventral axis through a signal transduction cascade. Identification of Drosophila genes involved in axis formation provides a launch-pad for comparative studies that examine the evolution of axis specification in different insects. Additionally, there is similarity between axial patterning mechanisms elucidated genetically in Drosophila and those demonstrated for chordates such as Xenopus. In this review we examine the postfertilization mechanisms underlying axis specification in Drosophila. Comparative data are then used to ask whether aspects of axis formation might be derived or ancestral.
Drosophila melanogaster, Morphogenesis, Animals, Cell Polarity, Gene Expression Regulation, Developmental, Female, Body Patterning, Signal Transduction
Drosophila melanogaster, Morphogenesis, Animals, Cell Polarity, Gene Expression Regulation, Developmental, Female, Body Patterning, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
