Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cancer The...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2013
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cancer Therapeutics
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Urokinase Receptor–Derived Peptide Inhibiting VEGF-Dependent Directional Migration and Vascular Sprouting

Authors: Bifulco K; Longanesi Cattani I; Liguori E; Arra C; Rea D; Masucci MT; DE ROSA, Mario; +3 Authors

A Urokinase Receptor–Derived Peptide Inhibiting VEGF-Dependent Directional Migration and Vascular Sprouting

Abstract

Abstract The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration, and uPAR88–92 is the minimal sequence required to induce cell motility. We previously showed that soluble forms of uPAR elicit angiogenic responses through their uPAR88–92 chemotactic sequence and that the synthetic peptide SRSRY exerts similar effects. By a drug design approach, based on the conformational analysis of the uPAR88–92 sequence, we developed peptides (pERERY, RERY, and RERF) that potently inhibit signaling triggered by uPAR88–92. In this study, we present evidence that these peptides are endowed also with a clear-cut antiangiogenic activity, although to different extents. The most active, RERF, prevents tube formation by human endothelial cells exposed to SRSRY. RERF also inhibits VEGF-triggered endothelial cell migration and cord-like formation in a dose-dependent manner, starting in the femtomolar range. RERF prevents F-actin polymerization, recruitment of αvβ3 integrin at focal adhesions, and αvβ3/VEGFR2 complex formation in endothelial cells exposed to VEGF. At molecular level, the inhibitory effect of RERF on VEGF signaling is shown by the decreased amount of phospho-FAK and phospho-Akt in VEGF-treated cells. In vivo, RERF prevents VEGF-dependent capillary sprouts originating from the host vessels that invaded angioreactors implanted in mice and neovascularization induced by subcorneal implantation of pellets containing VEGF in rabbits. Consistently, RERF reduced the growth and vascularization rate of tumors formed by HT1080 cells injected subcutaneously in the flanks of nude mice, indicating that RERF is a promising therapeutic agent for the control of diseases fuelled by excessive angiogenesis such as cancer. Mol Cancer Ther; 12(10); 1981–93. ©2013 AACR.

Country
Italy
Keywords

Vascular Endothelial Growth Factor A, Neovascularization, Pathologic, PLASMINOGEN-ACTIVATOR RECEPTOR; ENDOTHELIAL-CELL MIGRATION; ANGIOGENESIS, Angiogenesis Inhibitors, Corneal Keratocytes, ANGIOGENESIS, Receptors, Urokinase Plasminogen Activator, Gene Expression Regulation, Neoplastic, Mice, ENDOTHELIAL-CELL MIGRATION, Cell Movement, Drug Design, Neoplasms, Human Umbilical Vein Endothelial Cells, Animals, Humans, Rabbits, Peptides, PLASMINOGEN-ACTIVATOR RECEPTOR, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
bronze