Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Brain R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Brain Research
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The role of APP proteolytic processing in lipid metabolism

Authors: Tobias Hartmann; Marcus O. W. Grimm; Tatjana L. Rothhaar;

The role of APP proteolytic processing in lipid metabolism

Abstract

Amyloid plaques in brains are one of the major pathological hallmarks of Alzheimer's disease (AD). These plaques are mainly formed by aggregated Aβ, generated by proteolytic cleavage of the amyloid precursor protein (APP). Therefore, APP processing and Aβ production have been one of the central scopes in AD research in the past. Now, accumulating evidence suggests that besides its pathological impact, APP and its cleavage products also contribute to physiological functions. Proteolytic cleavage of APP is tightly regulated, and several lipids such as cholesterol and sphingolipids have been shown to influence APP processing and Aβ generation. In turn, Aβ as well as other APP cleavage products plays an essential role in regulating lipid homeostasis arguing for complex regulatory cycles in which lipids control APP processing and vice versa. This balanced regulation is disrupted under pathological conditions such as in AD. This article will review the physiological function of APP and its proteolytic products, especially Aβ and AICD, in regulating lipid homeostasis and which lipid species modulate APP processing. Furthermore, we summarize the alterations in lipid metabolism observed in AD patients and AD mouse models.

Related Organizations
Keywords

Amyloid beta-Protein Precursor, Alzheimer Disease, Proteolysis, Animals, Humans, Lipid Metabolism, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!