Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2005 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Telomere Length by an N-Terminal Region of the Yeast Telomerase Reverse Transcriptase

Authors: Margaret H. Platts; Hong Ji; Katherine L. Friedman; Latif M. Dharamsi;

Regulation of Telomere Length by an N-Terminal Region of the Yeast Telomerase Reverse Transcriptase

Abstract

Telomerase is a reverse transcriptase that maintains chromosome integrity through synthesis of repetitive telomeric sequences on the ends of eukaryotic chromosomes. In the yeast Saccharomyces cerevisiae, telomere length homeostasis is achieved through negative regulation of telomerase access to the chromosome terminus by telomere-bound Rap1 protein and its binding partners, Rif1p and Rif2p, and positive regulation by factors such as Ku70/80, Tel1p, and Cdc13p. Here we report the identification of mutations within an N-terminal region (region I) of the yeast telomerase catalytic subunit (Est2p) that cause telomere lengthening without altering measurable catalytic properties of the enzyme in vitro. These telomerase mutations affect telomere length through a Ku-independent mechanism and do not alter chromosome end structure. While Tel1p is required for expression of the telomere-lengthening phenotype, Rif1p and Rif2p are not, suggesting that telomere overextension is independent of Rap1p. Taken together, these data suggest that specific amino acids within region I of the catalytic subunit of yeast telomerase play a previously unanticipated role in the response to Tel1p regulation at the telomere.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Genes, Fungal, Telomere-Binding Proteins, Intracellular Signaling Peptides and Proteins, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, Telomere, DNA-Binding Proteins, Fungal Proteins, Repressor Proteins, Catalytic Domain, Mutation, Carrier Proteins, DNA, Fungal, Telomerase, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
bronze