Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article
Data sources: UnpayWall
Biochemistry
Article . 2010 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hypertrophic Cardiomyopathy-Linked Mutation D145E Drastically Alters Calcium Binding by the C-Domain of Cardiac Troponin C

Authors: Nicholas, Swindle; Svetlana B, Tikunova;

Hypertrophic Cardiomyopathy-Linked Mutation D145E Drastically Alters Calcium Binding by the C-Domain of Cardiac Troponin C

Abstract

The role of the C-domain sites of cardiac troponin C in the modulation of the calcium signal remains unclear. In this study, we investigated the effects of hypertrophic cardiomyopathy-linked mutations A8V, E134D, and D145E in cardiac troponin C on the properties of the C-domain sites. The A8V mutation had essentially no effect on the calcium or magnesium binding properties of the C-domain sites, while the mutation E134D moderately decreased calcium and magnesium binding affinities. On the other hand, the D145E mutation affected cooperative interactions between sites III and IV, significantly reducing the calcium binding affinity of both sites. Binding of the anchoring region of cardiac troponin I (corresponding to residues 34-71) to cardiac troponin C with the D145E mutation was not able to recover normal calcium binding to the C-domain. Experiments utilizing the fluorescent hydrophobic probe bis-ANS suggest that the D145E mutation dramatically reduced the extent of calcium-induced hydrophobic exposure by the C-domain. At high nonphysiological calcium concentration, A8V, E134D, and D145E mutations minimally affected the affinity of cardiac troponin C for the regulatory region of cardiac troponin I (corresponding to residues 128-180). In contrast, at lower physiological calcium concentration, the D145E mutation led to an approximately 8-fold decrease in the affinity of cardiac troponin C for the regulatory region of cardiac troponin I. Our results suggest that calcium binding properties of the C-domain sites might be important for the proper regulatory function of cardiac troponin C.

Related Organizations
Keywords

Aspartic Acid, Glutamic Acid, Cardiomyopathy, Hypertrophic, Protein Structure, Tertiary, Amino Acid Substitution, Mutation, Humans, Calcium, Magnesium, Calcium Signaling, Troponin C, Muscle Contraction, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
bronze