
Background The role of δ opioid receptors in opioid antinociception and tolerance development is still unclear. In the spinal cord of morphine-tolerant mice δ receptor ligands given intrathecally (i.t.) differently influenced the antinociceptive effect of the μ agonist D-Ala2-methyl-glycinol (DAMGO). The δ1 agonist D-Pen2,5-enkephalin (DPDPE) inhibited, the δ2 agonist deltorphin II did not alter, and the δ antagonist cha-TIPPψ potentiated the effect of DAMGO. We hypothesized that during the development of morphine tolerance the formation of μ-δ heterodimers may contribute to the spinal μ opioid tolerance. Delta ligands may affect the dimer formation differently. Those, like DPDPE may facilitate the dimer formation, hence inhibit the antinociceptive effect of DAMGO by causing virtual μ receptor down-regulation. Ligands that do not affect the dimer formation do not influence antinociception but ligands with the presumed capability of disconnecting the dimers may decrease the spinal tolerance to DAMGO. The δ ligand profile in morphine-tolerant rats, were also studied.
Pharmacology, Meeting Abstract, Pharmacology (medical)
Pharmacology, Meeting Abstract, Pharmacology (medical)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
