
During differentiation, neurons exhibit a reorganization of DNA modification patterns across their genomes. The de novo DNA methyltransferase Dnmt3a is implicated in this process, but the effects of its absence have not been fully characterized in a purified neuronal population. To better understand how DNA modifications contribute to neuronal function, we performed a comprehensive analysis of the epigenetic and transcriptional landscapes of Dnmt3a-deficient mature olfactory sensory neurons (mOSNs), the primary sensory neurons of the olfactory epithelium. Dnmt3a is required for both 5-methylcytosine and 5-hydroxymethylcytosine patterning within accessible genomic regions, including hundreds of neurodevelopmental genes and neural enhancers. Loss of Dnmt3a results in the global disruption of gene expression via activation of silent genes and reduction of mOSN-expressed transcripts. Importantly, the DNA modification state and inducibility of odorant-activated genes are markedly impaired in Dnmt3a knockouts, suggesting a crucial role for this enzyme in establishing an epigenetic landscape compatible with neuronal plasticity.
Epigenomics, Cultured, Neuronal Plasticity, Cells, Neuroscience(all), DNA Methylation, Olfactory Perception, Olfactory Receptor Neurons, DNA Methyltransferase 3A, Smell, Mice, Gene Expression Regulation, Animals, DNA (Cytosine-5-)-Methyltransferases, Cells, Cultured
Epigenomics, Cultured, Neuronal Plasticity, Cells, Neuroscience(all), DNA Methylation, Olfactory Perception, Olfactory Receptor Neurons, DNA Methyltransferase 3A, Smell, Mice, Gene Expression Regulation, Animals, DNA (Cytosine-5-)-Methyltransferases, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
