<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17046827
The physiological targets regulated by MEF2 in striated muscle are not completely known. Several recent studies have identified novel downstream target genes and shed light on the global transcriptional network regulated by MEF2 in muscle. In our continuing effort to identify novel, downstream pathways controlled by MEF2, we have used mef2a knock-out mice to find those genes dependent on MEF2A transcriptional activity. Here, we describe the characterization of a direct, downstream target gene for the MEF2A transcription factor encoding a large, muscle-specific protein that localizes to the Z-disc/costameric region in striated muscle. This gene, called myomaxin, was identified as a gene markedly down-regulated in MEF2A knock-out hearts. Myomaxin is the mouse ortholog of a partial human cDNA of unknown function named cardiomyopathy associated gene 3 (CMYA3). Myomaxin is expressed as a single, large transcript of approximately 11 kilobases in adult heart and skeletal muscle with an open reading frame of 3,283 amino acids. The protein encoded by the myomaxin gene is related to the actin-binding protein Xin and interacts with the sarcomeric Z-disc protein, alpha-actinin-2. Our findings demonstrate that Myomaxin functions directly downstream of MEF2A at the peripheral Z-disc complex in striated muscle potentially playing a role in regulating cytoarchitectural integrity.
Mice, Knockout, Base Sequence, MEF2 Transcription Factors, Molecular Sequence Data, Nuclear Proteins, LIM Domain Proteins, Rats, DNA-Binding Proteins, Cytoskeletal Proteins, Mice, Gene Expression Regulation, Myogenic Regulatory Factors, Sequence Homology, Nucleic Acid, COS Cells, Chlorocebus aethiops, Animals, Humans, Actinin
Mice, Knockout, Base Sequence, MEF2 Transcription Factors, Molecular Sequence Data, Nuclear Proteins, LIM Domain Proteins, Rats, DNA-Binding Proteins, Cytoskeletal Proteins, Mice, Gene Expression Regulation, Myogenic Regulatory Factors, Sequence Homology, Nucleic Acid, COS Cells, Chlorocebus aethiops, Animals, Humans, Actinin
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |