Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The International Journal Of Cell Cloning
Article . 2014 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DOCK2 Is Critical for CD8+TCR− Graft Facilitating Cells to Enhance Engraftment of Hematopoietic Stem and Progenitor Cells

Authors: Yoshinori Fukui; Yujie Wen; Mary Jane Elliott; Mariusz Z. Ratajczak; Thomas Miller; Yiming Huang; Deborah R Corbin; +2 Authors

DOCK2 Is Critical for CD8+TCR− Graft Facilitating Cells to Enhance Engraftment of Hematopoietic Stem and Progenitor Cells

Abstract

Abstract CD8+TCR− graft facilitating cells (FCs) enhance engraftment of hematopoietic stem cells (HSCs) in allogeneic and syngeneic recipients. The mechanisms by which FCs promote HSC engraftment and tolerance induction have not been fully elucidated. Here, we provide data to support a critical role for dedicator of cytokinesis 2 (DOCK2) in multiple aspects of FCs function. DOCK2−/− FCs exhibit compromised facilitative function in vivo as evidenced by the loss of engraftment-enhancing capability for c-Kit+Sca-1+lineage− (KSL) cells, and compromised ability to promote KSL cell homing and lodgment in hematopoietic niche. Deletion of DOCK2 abrogates the ability of FCs to induce differentiation of naïve CD4+CD25− T cells into FoxP3+ regulatory T cells and interleukin-10-producing type 1 regulatory T cells in vitro. Moreover, DOCK2−/− FCs are unable to promote survival of KSL cells when cocultured with KSL cells. DOCK2−/− FCs also exhibit compromised migration to stroma-derived factor-1 in vitro and impaired homing to the bone marrow in vivo. In conclusion, our results demonstrate that DOCK2 is critical for FCs to maintain its immunomodulatory function and exert its trophic effects on KSL cells. These findings may have direct clinical relevance to promote HSC engraftment for treatment of autoimmunity, hemoglobinopathies, and to induce transplantation tolerance. Stem Cells 2014;32:2732–2743

Related Organizations
Keywords

Cell Survival, GTPase-Activating Proteins, Hematopoietic Stem Cell Transplantation, Receptors, Antigen, T-Cell, Down-Regulation, CD8-Positive T-Lymphocytes, Hematopoietic Stem Cells, Models, Biological, T-Lymphocytes, Regulatory, Mice, Inbred C57BL, Cell Movement, Animals, Guanine Nucleotide Exchange Factors, Stem Cell Niche

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
hybrid