Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activation of Cyclin D1-Cdk4 and Cdk4-Directed Phosphorylation of RB Protein in Diabetic Mesangial Hypertrophy

Authors: Daniel J. Riley; Denis Feliers; Meredith A. Frank;

Activation of Cyclin D1-Cdk4 and Cdk4-Directed Phosphorylation of RB Protein in Diabetic Mesangial Hypertrophy

Abstract

To determine the role of cell-cycle proteins in regulating pathological renal hypertrophy, diabetes was induced in mice expressing a human retinoblastoma (RB) transgene and in wild-type littermates. Whole-kidney and glomerular hypertrophy caused by hyperglycemia was associated with specific G1 phase cell-cycle events: early and sustained increase in expression of cyclin D1 and activation of cyclin D1-cdk4 complexes, but no change in expression of cyclin E or cdk2 activity. Overexpression of RB alone likewise caused hypertrophy and increased only cyclin D1-cdk4 activity; these effects were not further augmented by high glucose. Identical observations were made when isolated mesangial cells conditionally overexpressing RB from a tetracycline-repressible system hypertrophied in response to high glucose. A mitogenic signal in the same cell-culture system, in contrast, transiently and sequentially activated both cyclin D1-cdk4 and cyclin E-cdk2. In vivo and in cultured mesangial cells, high glucose resulted in persistent partial phosphorylation of RB, an event catalyzed specifically by cyclin D1-cdk4. These data indicate that mesangial hypertrophy caused by hyperglycemia in diabetes results in sustained cyclin D1-cdk4-dependent phosphorylation of RB and maintenance of mesangial cells in the early-to-middle G1 phase of the cell cycle.

Keywords

Cyclin-Dependent Kinase 4, Mice, Transgenic, Hypertrophy, Retinoblastoma Protein, Cyclin-Dependent Kinases, Diabetes Mellitus, Experimental, Glomerular Mesangium, Disease Models, Animal, Mice, Diabetes Mellitus, Type 1, Proto-Oncogene Proteins, Animals, Humans, Cyclin D1, Phosphorylation, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!