Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2020 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Probing up-down quark matter via gravitational waves

Authors: Chen Zhang;

Probing up-down quark matter via gravitational waves

Abstract

Recently, it was shown that quark matter with only $u$ and $d$ quarks ($ud$QM) can be the ground state of matter for baryon numbers $A>A_\textrm{min}$ with $A_{\rm min}\gtrsim 300$. In this paper, we explore $ud$ quark stars ($ud$QSs) that are composed of $ud$QM, in the context of the two-families scenario in which $ud$QSs and hadronic stars (HSs) can coexist. Distinct signatures are discussed compared to the conventional study regarding strange quark stars (SQSs). We show that the requirements of $A_{\rm min}\gtrsim 300$ and the most massive compact star observed being a $ud$QS together may put stringent constraints on the allowed parameter space of $ud$QSs. Then, we study the related gravitational-wave probe of the tidal deformability in binary star mergers, including the $ud$QS-$ud$QS and $ud$QS-HS cases. The obtained values of the tidal deformability at 1.4 solar masses and the average tidal deformability are all in good compatibility with the experimental constraints of GW170817. This study points to a new possible interpretation of the GW170817 binary merger event, where $ud$QS may be at least one component of the binary system detected.

Published version. Typo fixed

Related Organizations
Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
Related to Research communities