
Abstract Background Although a substantial fraction of the US population was infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during December 2021–February 2022, the subsequent evolution of population immunity reflects the competing influences of waning protection over time and acquisition or restoration of immunity through additional infections and vaccinations. Methods Using a Bayesian evidence synthesis model of reported coronavirus disease 2019 (COVID-19) data (diagnoses, hospitalizations), vaccinations, and waning patterns for vaccine- and infection-acquired immunity, we estimate population immunity against infection and severe disease from SARS-CoV-2 Omicron variants in the United States, by location (national, state, county) and week. Results By 9 November 2022, 97% (95%–99%) of the US population were estimated to have prior immunological exposure to SARS-CoV-2. Between 1 December 2021 and 9 November 2022, protection against a new Omicron infection rose from 22% (21%–23%) to 63% (51%–75%) nationally, and protection against an Omicron infection leading to severe disease increased from 61% (59%–64%) to 89% (83%–92%). Increasing first booster uptake to 55% in all states (current US coverage: 34%) and second booster uptake to 22% (current US coverage: 11%) would increase protection against infection by 4.5 percentage points (2.4–7.2) and protection against severe disease by 1.1 percentage points (1.0–1.5). Conclusions Effective protection against SARS-CoV-2 infection and severe disease in November 2022 was substantially higher than in December 2021. Despite this high level of protection, a more transmissible or immune evading (sub)variant, changes in behavior, or ongoing waning of immunity could lead to a new SARS-CoV-2 wave.
SARS-CoV-2, Major Article, Humans, COVID-19, Bayes Theorem, Adaptive Immunity, United States
SARS-CoV-2, Major Article, Humans, COVID-19, Bayes Theorem, Adaptive Immunity, United States
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
