Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum

Authors: James F, Collins; Christina A, Franck; Kris V, Kowdley; Fayez K, Ghishan;

Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum

Abstract

We sought to identify novel genes involved in intestinal iron absorption by inducing iron deficiency in rats during postnatal development from the suckling period through adulthood. We then performed comparative gene chip analyses (RAE230A and RAE230B chips; Affymetrix) with cRNA derived from duodenal mucosa. Real-time PCR was used to confirm changes in gene expression. Genes encoding the apical iron transport-related proteins [ divalent metal transporter 1 (DMT1) and duodenal cytochrome b] were strongly induced at all ages studied, whereas increases in mRNA encoding the basolateral proteins iron-regulated gene 1 and hephaestin were observed only by real-time PCR. In addition, transferrin receptor 1 and heme oxygenase 1 were induced. We also identified induction of novel genes not previously associated with intestinal iron transport. The Menkes copper ATPase (ATP7a) and metallothionein were strongly induced at all ages studied, suggesting increased copper absorption by enterocytes during iron deficiency. We also found significantly increased liver copper levels in 7- to 12-wk-old iron-deficient rats. Also upregulated at most ages examined were the sodium-dependent vitamin C transporter, tripartite motif protein 27, aquaporin 4, lipocalin-interacting membrane receptor, and the breast cancer-resistance protein (ABCG2). Some genes also showed decreased expression with iron deprivation, including several membrane transporters, metabolic enzymes, and genes involved in the oxidative stress response. We speculate that dietary iron deprivation leads to increased intestinal copper absorption via DMT1 on the brush-border membrane and the Menkes copper ATPase on the basolateral membrane. These findings may thus explain copper loading in the iron-deficient state. We also demonstrate that many other novel genes may be differentially regulated in the setting of iron deprivation.

Related Organizations
Keywords

Male, Duodenum, Down-Regulation, Iron Deficiencies, Rats, Up-Regulation, Rats, Sprague-Dawley, Gene Expression Regulation, Animals, Iron, Dietary, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!