
arXiv: 2209.11946
Machine programming (MP) is an emerging field at the intersection of deterministic and probabilistic computing, and it aims to assist software and hardware engineers, among other applications. Along with powerful compute resources, MP systems often rely on vast amount of open-source code to learn interesting properties about code and programming and solve problems in the areas of debugging, code recommendation, auto-completion, etc. Unfortunately, several of the existing MP systems either do not consider quality of code repositories or use atypical quality measures than those typically used in software engineering community to select them. As such, impact of quality of code repositories on the performance of these systems needs to be studied. In this preliminary paper, we evaluate impact of different quality repositories on the performance of a candidate MP system. Towards that objective, we develop a framework, named GitRank, to rank open-source repositories on quality, maintainability, and popularity by leveraging existing research on this topic. We then apply GitRank to evaluate correlation between the quality measures used by the candidate MP system and the quality measures used by our framework. Our preliminary results reveal some correlation between the quality measures used in GitRank and ControlFlag's performance, suggesting that some of the measures used in GitRank are applicable to ControlFlag. But it also raises questions around right quality measures for code repositories used in MP systems. We believe that our findings also generate interesting insights towards code quality measures that affect performance of MP systems.
6 pages, 1 figure, to be presented at MaLTeSQuE 2022 workshop to be held with ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC-FSE) 2022, November 18, Singapore,
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
