
handle: 20.500.11850/463462
Abstract Over a four hour period between 2014 June 12–13 a series of three flares were observed within AR 12087. This sequence of flares started with a non-eruptive M-class flare, followed by a non-eruptive C-class flare, and finally ended with a second C-class flare that had an associated filament eruption. In this paper we combine spectroscopic analysis of Interface Region Imaging Spectrometer observations of the Si iv line during the three flares along with a series of nonlinear force-free field (NLFFF) extrapolations in order to investigate the conditions that lead the final flare to be eruptive. From this analysis it is found to be unlikely that the eruption was triggered by either kink instability or by tether-cutting reconnection, allowing the flux rope to rise into a region where it would be susceptible to the torus instability. The NLFFF modeling does, however, suggest that the overlying magnetic field has a fan-spine topology, raising the possibility that breakout reconnection occurring during the first two flares weakened the overlying field, allowing the flux rope to erupt in the subsequent third flare.
Solar physics, Solar active regions, Solar active region filaments, Solar flare spectra, Solar flares, Solar activity, Solar active region magnetic fields
Solar physics, Solar active regions, Solar active region filaments, Solar flare spectra, Solar flares, Solar activity, Solar active region magnetic fields
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
