Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Prosthodo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Prosthodontics
Article . 2010 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bond Strength of Resin Cements to Co-Cr and Ni-Cr Metal Alloys Using Adhesive Primers

Authors: Nelson R.F.A. Silva; Marina Di Francescantonio; Marcelo Tavares de Oliveira; Rubens Nazareno Garcia; José Carlos Romanini; Marcelo Giannini;

Bond Strength of Resin Cements to Co-Cr and Ni-Cr Metal Alloys Using Adhesive Primers

Abstract

The aim of this study was to evaluate the effectiveness of adhesive primers (APs) applied to Co-Cr and Ni-Cr metal alloys on the bond strength of resin cements to alloys.Eight cementing systems were evaluated, consisting of four resin cements (Bistite II DC, LinkMax, Panavia F 2.0, RelyX Unicem) with or without their respective APs (Metaltite, Metal Primer II, Alloy Primer, Ceramic Primer). The two types of dental alloys (Co-Cr, Ni-Cr) were cast in plate specimens (10 x 5 x 1 mm(3)) from resin patterns. After casting, the plates were sandblasted with aluminum oxide (100 microm) and randomly divided into eight groups (n = 6). Each surface to be bonded was treated with one of eight cementing systems. Three resin cement cylinders (0.5 mm high, 0.75 mm diameter) were built on each bonded metal alloy surface, using a Tygon tubing mold. After water storage for 24 hours, specimens were subjected to micro-shear testing. Data were statistically analyzed by two-way ANOVA and Tukey's studentized range test.The application of Metal Primer II resulted in a significantly higher bond strength for LinkMax resin cement when applied in both metal alloys. In general, the cementing systems had higher bond strengths in Co-Cr alloy than in Ni-Cr.The use of AP between alloy metal surfaces and resin cements did not increase the bond strength for most cementing systems evaluated.

Keywords

Dental Stress Analysis, Analysis of Variance, Self-Curing of Dental Resins, Cobalt, Statistics, Nonparametric, Resin Cements, Random Allocation, Nickel, Adhesives, Materials Testing, Chromium Alloys, Shear Strength

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!