Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cerebral Cortexarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cerebral Cortex
Article
Data sources: UnpayWall
Cerebral Cortex
Article . 2011 . Peer-reviewed
Data sources: Crossref
Cerebral Cortex
Article . 2012
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Neural Bases of Grapheme–Color Synesthesia Are Not Localized in Real Color-Sensitive Areas

Authors: Jean-Michel, Hupé; Cécile, Bordier; Michel, Dojat;

The Neural Bases of Grapheme–Color Synesthesia Are Not Localized in Real Color-Sensitive Areas

Abstract

The subjective experience of color by synesthetes when viewing achromatic letters and numbers supposedly relates to real color experience, as exemplified by the recruitment of the V4 color center observed in some brain imaging studies. Phenomenological reports and psychophysics tests indicate, however, that both experiences are different. Using functional magnetic resonance imaging, we tried to precise the degree of coactivation by real and synesthetic colors, by evaluating each color center individually, and applying adaptation protocols across real and synesthetic colors. We also looked for structural differences between synesthetes and nonsynesthetes. In 10 synesthetes, we found that color areas and retinotopic areas were not activated by synesthetic colors, whatever the strength of synesthetic associations measured objectively for each subject. Voxel-based morphometry revealed no white matter (WM) or gray matter difference in those regions when compared with 25 control subjects. But synesthetes had more WM in the retrosplenial cortex bilaterally. The joint coding of real and synesthetic colors, if it exists, must therefore be distributed rather than localized in the visual cortex. Alternatively, the key to synesthetic color experience might not lie in the color system.

Keywords

Adult, Male, Association Learning, Middle Aged, Young Adult, Stroop Test, Humans, Female, Cues, Nerve Net, Color Perception, Visual Cortex

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 1%
bronze