Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Stress & Ch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Stress & Chaperones
Article . 2013 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm

Authors: Myung-Hee, Kim; Yutaka, Sonoda; Kentaro, Sasaki; Hironori, Kaminaka; Ryozo, Imai;

Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm

Abstract

Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3) shares an RNA chaperone function with E. coli cold shock proteins and regulates freezing tolerance during cold acclimation. Here, we screened for AtCSP3-interacting proteins using a yeast two-hybrid system and 38 candidate interactors were identified. Sixteen of these were further confirmed in planta interaction between AtCSP3 by a bi-molecular fluorescence complementation assay. We found that AtCSP3 interacts with CONSTANS-LIKE protein 15 and nuclear poly(A)-binding proteins in nuclear speckles. Three 60S ribosomal proteins (RPL26A, RPL40A/UBQ2, and RPL36aB) and the Gar1 RNA-binding protein interacted with AtCSP3 in the nucleolus and nucleoplasm, suggesting that AtCSP3 functions in ribosome biogenesis. Interactions with LOS2/enolase and glycine-rich RNA-binding protein 7 that are cold inducible, and an mRNA decapping protein 5 (DCP5) were observed in the cytoplasm. These data suggest that AtCSP3 participates in multiple complexes that reside in nuclear and cytoplasmic compartments and possibly regulates RNA processing and functioning.

Keywords

Cell Nucleus, Models, Molecular, Cytoplasm, Arabidopsis Proteins, Two-Hybrid System Techniques, Arabidopsis, Protein Interaction Maps, RNA, Messenger, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
gold