Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digital Filter Structures

Authors: K. S. Thyagarajan;

Digital Filter Structures

Abstract

What we have learnt so far is how to design either an IIR or FIR digital filter to satisfy a given set of specifications in the frequency domain. We have also seen examples based on MATLAB wherein filtering operations are carried out by specific functions. We really don’t know how these functions really work. If you are a S/W or H/W engineer and want to implement a digital filter in software or hardware, you should be able to describe the flow of signal from the input to the output. Thus, a digital filter structure describes the flow of signal as it propagates from the input to the output sample by sample. This filtering operation is described by a signal flow graph, which is a block diagram with blocks corresponding to the arithmetic operations of addition, multiplication, and unit delays. The blocks are connected by lines with arrows pointing in the direction of signal flow. In digital filter terminology, an adder has two inputs and one output, as shown in Fig. 8.1a. Similarly, a multiplier accepts an input signal and multiplies it by a coefficient a to produce an output, as shown in Fig. 8.1b. A unit delay block is a register, which can hold a sample from its input. The sample can be read from its output after one sample interval. Figure 8.1c illustrates a unit delay element. Note that the unit delay operation in the Z-domain is denoted by z−1. Finally, Fig. 8.1d shows how a signal is tapped into. So, these are the basic building blocks of a digital filter structure. Let us look at a simple example.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!