
We study theminimum-cost bounded-skewrouting tree (BST) problem under the linear delay model. This problem captures several engineering tradeoffs in the design of routing topologies with controlled skew. We propose three tradeoff heuristics. (1) For a fixed topology Extended-DME (Ex-DME) extends the DME algorithm for exact zero-skew trees via the concept of a merging region. (2) For arbitrary topology and arbitrary embedding, Extended Greedy-DME (ExG-DME) very closely matches the best known heuristics for the zero-skewcase,and for the infinite-skewcase (i.e., the Steiner minimal tree problem). (3) For arbitrary topology and single-layer (planar) embedding, the Extended Planar-DME (ExP-DME) algorithm exactly matches the best known heuristic for zero-skewplanar routing, and closely approaches the best known performance for the infinite-skewcase. Ourwork provides unifications of the clock routing and Steiner tree heuristic literatures and gives smooth cost-skew tradeoff that enable good engineering solutions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
