Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis

Authors: Jaskoll, Tina; Witcher, Dan; Toreno, Leo; Bringas, Pablo; Moon, Anne M; Melnick, Michael;

FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis

Abstract

FGF8 has been shown to play important morphoregulatory roles during embryonic development. The observation that craniofacial, cardiovascular, pharyngeal, and neural phenotypes vary with Fgf8 gene dosage suggests that FGF8 signaling induces differences in downstream responses in a dose-dependent manner. In this study, we investigated if FGF8 plays a dose-dependent regulatory role during embryonic submandibular salivary gland (SMG) morphogenesis. We evaluated SMG phenotypes of Fgf8 hypomorphic mice, which have decreased Fgf8 gene function throughout embryogenesis. We also evaluated SMG phenotypes of Fgf8 conditional mutants in which Fgf8 function has been completely ablated in its expression domain in the first pharyngeal arch ectoderm from the time of arch formation. Fgf8 hypomorphs have hypoplastic SMGs, whereas conditional mutant SMGs exhibit ontogenic arrest followed by involution and are absent by E18.5. SMG aplasia in Fgf8 ectoderm conditional mutants indicates that FGF8 signaling is essential for the morphogenesis and survival of Pseudoglandular Stage and older SMGs. Equally important, the presence of an initial SMG bud in Fgf8 conditional mutants indicates that initial bud formation is FGF8 independent. Mice heterozygous for either the Fgf8 null allele (Fgf8(+/N)) or the hypomorphic allele (Fgf8(+/H)) have SMGs that are indistinguishable from wild-type (Fgf8(+/+)) mice which suggest that there is not only an FGF8 dose-dependent phenotypic response, but a nonlinear, threshold-like, epistatic response as well. We also found that enhanced FGF8 signaling induced, and abrogated FGF8 signaling decreased, SMG branching morphogenesis in vitro. Furthermore, since FGF10 and Shh expression is modulated by Fgf8 levels, we postulated that exogenous FGF10, Shh, or FGF10 + Shh peptide supplementation in vitro would largely "rescue" the abnormal SMG phenotype associated with decreased FGF8 signaling. This is as expected, though there is no synergistic effect with FGF10 + Shh peptide supplementation. These in vitro experiments model the principle that mutations have different effects in the context of different epigenotypes.

Keywords

Fibroblast Growth Factor 8, Submandibular Gland, Cell Biology, Submandibular salivary gland, FGF8, Shh, Fibroblast Growth Factors, Mice, Inbred C57BL, Mice, Pharyngeal arch ectoderm, FGF10, Branching morphogenesis, Animals, Female, Craniofacial defects, Molecular Biology, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
hybrid