Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SciPost Physics Proc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SciPost Physics Proceedings
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SciPost Physics Proceedings
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drell-Yan $p_{\bot}$ with NLO-matched Parton Branching TMDs at energies from fixed-target to LHC

Authors: Aleksandra Lelek;

Drell-Yan $p_{\bot}$ with NLO-matched Parton Branching TMDs at energies from fixed-target to LHC

Abstract

The description of the Drell-Yan (DY) transverse momentum spectrum requires matching of fixed order QCD calculations with soft gluon resummation up to all orders in the QCD coupling. It has been noticed in the literature that a consistent description of DY data in a wide kinematic regime from fixed-target to LHC energies is problematic. In this work the predictions for transverse momentum spectrum of DY data coming from experiments in very different kinematic ranges (NuSea, R209, Phenix, LHC 8 TeV and 13 TeV center-of-mass energies \sqrt{s} s ) are calculated by applying transverse momentum dependent (TMD) parton distributions obtained from the Parton Branching (PB) method, combined with the next-to-leading-order (NLO) calculation of the hard process in the MCatNLO method. We discuss the problems involved in matching of the fixed order calculation and resummation, especially in the moderate to low mass and p_{\bot} p ⊥ region accessible at fixed target experiments. We find that at low DY mass and low \sqrt{s} s even in the region of p_{\bot}/Q\sim 1 p ⊥ / Q ∼ 1 the contribution of multiple soft gluon emissions (included in the PB-TMDs) is essential to describe the measurements, while at larger masses and LHC energies the contribution from soft gluons in the region of p_{\bot}/Q\sim 1 p ⊥ / Q ∼ 1 is small.

Related Organizations
Keywords

High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Physics, QC1-999, FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Published in a Diamond OA journal