
Pauli channels are ubiquitous in quantum information, both as a dominant noise source in many computing architectures and as a practical model for analyzing error correction and fault tolerance. Here, we prove several results on efficiently learning Pauli channels and more generally the Pauli projection of a quantum channel. We first derive a procedure for learning a Pauli channel on n qubits with high probability to a relative precision ϵ using O (ϵ -2 n2 n ) measurements, which is efficient in the Hilbert space dimension. The estimate is robust to state preparation and measurement errors, which, together with the relative precision, makes it especially appropriate for applications involving characterization of high-accuracy quantum gates. Next, we show that the error rates for an arbitrary set of s Pauli errors can be estimated to a relative precision ϵ using O (ϵ -4 log s log s/ϵ) measurements. Finally, we show that when the Pauli channel is given by a Markov field with at most k -local correlations, we can learn an entire n -qubit Pauli channel to relative precision ϵ with only O k (ϵ -2 n 2 log n ) measurements, which is efficient in the number of qubits. These results enable a host of applications beyond just characterizing noise in a large-scale quantum system: they pave the way to tailoring quantum codes, optimizing decoders, and customizing fault tolerance procedures to suit a particular device.
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
