Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Plant Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of 4‐coumarate:coenzyme A ligase (4CL) substrate recognition domains

Authors: Carl J. Douglas; Jane J. K. Shin; Jürgen Ehlting;

Identification of 4‐coumarate:coenzyme A ligase (4CL) substrate recognition domains

Abstract

Summary4‐coumarate:CoA ligase (4CL), the last enzyme of the general phenylpropanoid pathway, provides precursors for the biosynthesis of a large variety of plant natural products. 4 CL catalyzes the formation of CoA thiol esters of 4‐coumarate and other hydroxycinnamates in a two step reaction involving the formation of an adenylate intermediate. 4 CL shares conserved peptide motifs with diverse adenylate‐forming enzymes such as firefly luciferases, non‐ribosomal peptide synthetases, and acyl:CoA synthetases. Amino acid residues involved in 4 CL catalytic activities have been identified, but domains involved in determining substrate specificity remain unknown. To address this question, we took advantage of the difference in substrate usage between the Arabidopsis thaliana 4 CL isoforms At4CL1 and At4CL2. While both enzymes convert 4‐coumarate, only At4CL1 is also capable of converting ferulate. Employing a domain swapping approach, we identified two adjacent domains involved in substrate recognition. Both substrate binding domain I (sbd I) and sbd II of At4CL1 alone were sufficient to confer ferulate utilization ability upon chimeric proteins otherwise consisting of At4CL2 sequences. In contrast, sbd I and sbd II of At4CL2 together were required to abolish ferulate utilization in the context of At4CL1. Sbd I corresponds to a region previously identified as the substrate binding domain of the adenylation subunit of bacterial peptide synthetases, while sbd II centers on a conserved domain of so far unknown function in adenylate‐forming enzymes (GEI/LxIxG). At4CL1 and At4CL2 differ in nine amino acids within sbd I and four within sbd II, suggesting that these play roles in substrate recognition.

Related Organizations
Keywords

Binding Sites, Recombinant Fusion Proteins, Coenzyme A Ligases, Arabidopsis, Genes, Plant, Protein Structure, Tertiary, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?