Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brain Tumor Segmentation Using Partial Depthwise Separable Convolutions

Authors: Tirivangani Magadza; Serestina Viriri;

Brain Tumor Segmentation Using Partial Depthwise Separable Convolutions

Abstract

Gliomas are the most common and aggressive form of all brain tumors, with medial survival rates of less than two years for the highest grade. While accurate and reproducible segmentation of brain tumors is paramount for an effective treatment plan and diagnosis, automatic brain tumor segmentation is challenging because the lesion can appear anywhere in the brain with varying shapes and sizes from one patient to another. Moreover, segmentation is only done by analyzing pixel intensity values of surrounding tissues, and the diffusing nature of aggressive brain tumors makes it even more challenging to delineate tumor boundaries. Nevertheless, deep learning methods have superior performance in automatic brain tumor segmentation. However, their boost in performance comes at the cost of high computational complexity. This paper proposes efficient network architecture for 3D brain tumor segmentation, partially utilizing depthwise separable convolutions to reduce computational costs. The experimental results on the BraTS 2020 dataset show that our methods could achieve comparable results with the state-of-the-art methods with minimum computational complexity. Furthermore, we provide a critical analysis of the current efficient model designs. The code for this project is available at https://github.com/tmagadza/partialDepthwiseNet.

Related Organizations
Keywords

depth-wise separable convolution, deep learning, magnetic resonance imaging, Electrical engineering. Electronics. Nuclear engineering, 3D U-Net, Brain tumor segmentation, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold