Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microelectronics Jou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microelectronics Journal
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of graded In Ga1−P buffer by Raman scattering method

Authors: Loránt Peternai; Jaroslav Kovác; Gert Irmer; Stanislav Hasenöhrl; Jozef Novák; Rudolf Srnánek;

Investigation of graded In Ga1−P buffer by Raman scattering method

Abstract

Abstract The compositional changes of InxGa1−xP graded buffer inserted between GaP substrate and subsequently grown In0.36Ga0.64P homojunction LED structure were investigated by Raman spectroscopy. The indium content of InxGa1−xP interlayers was increased in eight steps with thickness of 300 nm and constant compositional change ΔxIn between the steps. The properties of InxGa1−xP graded buffer along the structure cross-section have been studied by Raman back scattering method and the changes in GaP LO and TO phonons were investigated. Raman shift of 13 cm−1 in GaP-like LO1 phonon was measured on beveled [ 100 ] surface for compositional change of InxGa1−xP layer in the range of 0 [ 011 ] direction revealed a strong TO phonon at 366 cm−1 and weak LO phonon peak at 405 cm−1 in GaP substrate. By reaching the graded InxGa1−xP region the intensity of TO phonon decreases and appearance of considerable TO1 phonon shift up to 350 cm−1 for In content xIn=0.16 was observed. For upper graded layers with xIn from 0.16 to 0.24 the position of GaP-like TO1 was constant and can be ascribed to relaxation of lattice mismatched thin InxGa1−xP graded upper layers in the structure.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!