Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Materials...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Materials Science
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vinylphosphonic acid-modified calcium aluminate and calcium silicate cements

Authors: T. Sugama; R. N. Mora;

Vinylphosphonic acid-modified calcium aluminate and calcium silicate cements

Abstract

Cementitious materials in terms of calcium phosphate cements (CPC) were prepared through the acid-base reaction between vinylphosphonic acid (VPA) and calcium aluminate cement (CAC) reactants or calcium silicate cement (CSC) reactants at 25 °C. Using CAC, two factors were responsible for the development of strength in the cements: one is the formation of an amorphous calcium-complexed vinylphosphonate (CCVP) salt phase as the reaction product, and the other was the high exothermic reaction energy. Because the formation of CCVP depletes the calcium in the CAC reactants, Al2O3·xH2O gel was precipitated as a by-product. CCVP→ amorphous calcium pyrophosphate hydrate (CPPH) and Al2O3·xH2O → γ-AlOOH phase transitions occurred in the CPC body autoclaved at 100 °C. Increasing the temperature to 200 °C promoted the transformation of CPPH into crystalline hydroxyapatite (HOAp). In the VPA-CSC system, the strong alkalinity of CSC reactant with its high CaO content served in forming the CPPH reaction product which led to a quick setting of the CPC at 25 °C. Hydrothermal treatment at 100 °C resulted in the CPPH → HOAp phase transition, which was completed at 300 °C for both the VPA-CAC and VPA-CSC systems, and also precipitated the silica gel as by-product. Although the porosity of the specimens was one of the important factors governing the improvement of strength, a moderately mixed phase of amorphous CPPH and crystalline HOAp as the matrix layers contributed significantly to strengthening of the CPC specimens.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!