Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA Repairarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA Repair
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DNA Repair
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A critical role for the C-terminus of Nej1 protein in Lif1p association, DNA binding and non-homologous end-joining

Authors: M. Sulek; Robert M. Yarrington; Jef D. Boeke; Murray S. Junop; G. McGibbon;

A critical role for the C-terminus of Nej1 protein in Lif1p association, DNA binding and non-homologous end-joining

Abstract

A predominant pathway implicated in repair of DNA double-strand breaks (DSBs) is the evolutionarily conserved non-homologous end-joining (NHEJ) pathway. Among the major constituents of this pathway in Saccharomyces cerevisiae is Nej1p, for which a biochemical function has yet to be determined. In this work we demonstrate that Nej1p exhibits a DNA binding activity (KD approximately 1.8 microM) comparable to Lif1p. Although binding is enhanced with larger substrates (>300 bp), short approximately 20 bp substrates can suffice. This DNA binding activity is the first biochemical evidence supporting the idea that Nej1p plays a direct role in the repair of double-strand breaks. The C-terminus of Nej1p is required for interaction with Lif1p and is sufficient for DNA binding. Structural characterization reveals that Nej1p exists as a dimer, and that residues 1-244 are sufficient for dimer formation. Nej1p (aa 1-244) is shown to be defective in end-joining in vivo. Preliminary functional and structural studies on the Nej1p-Lif1p complex suggest that the proteins stably co-purify and the complex binds DNA with a higher affinity than each independent component. The significance of these results is discussed with reference to current literature on Nej1p and other end-joining factors (mammalian and yeast), specifically the recently identified putative mammalian homologue of Nej1p, XLF/Cernunnos.

Keywords

DNA-Binding Proteins, Solutions, Saccharomyces cerevisiae Proteins, Chromatography, Gel, Mutagenesis, Site-Directed, Electrophoresis, Polyacrylamide Gel, Electrophoretic Mobility Shift Assay, DNA, Fungal, Dimerization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?