Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acute Impact of Pacing at Different Cardiac Sites on Left Ventricular Rotation and Twist in Dogs

Authors: Zhi-Wen Zhou; Bu-Chun Zhang; Yi Yu; Kai Guo; Wei Li; Rui Zhang; Peng-Pai Zhang; +1 Authors

Acute Impact of Pacing at Different Cardiac Sites on Left Ventricular Rotation and Twist in Dogs

Abstract

We evaluated the acute impact of different cardiac pacing sites on two-dimensional speckle-tracking echocardiography (STE) derived left ventricular (LV) rotation and twist in healthy dogs.Twelve dogs were used in this study. The steerable pacing electrodes were positioned into right heart through the superior or inferior vena cava, into LV through aorta across the aortic valve. The steerable pacing electrodes were positioned individually in the right atrium (RA), right ventricular apex (RVA), RV outflow tract (RVOT), His bundle (HB), LV apex (LVA) and LV high septum (LVS), individual pacing mode was applied at 10 minutes interval for at least 5 minutes from each position under fluoroscopy and ultrasound guidance and at stabilized hemodynamic conditions. LV short-axis images at the apical and basal levels were obtained during sinus rhythm and pacing. Offline STE analysis was performed. Rotation, twist, time to peak rotation (TPR), time to peak twist (TPT), and apical-basal rotation delay (rotational synchronization index, RSI) values were compared at various conditions. LV pressure was monitored simultaneously.Anesthetic death occurred in 1 dog, and another dog was excluded because of bad imaging quality. Data from 10 dogs were analyzed. RVA, RVOT, HB, LVA, LVS, RARV (RA+RVA) pacing resulted in significantly reduced apical and basal rotation and twist, significantly prolonged apical TPR, TPT and RSI compared to pre-pacing and RA pacing (all P<0.05). The apical and basal rotation and twist values were significantly higher during HB pacing than during pacing at ventricular sites (all P<0.05, except basal rotation at RVA pacing). The apical TPR during HB pacing was significantly shorter than during RVOT and RVA pacing (both P<0.05). The LV end systolic pressure (LVESP) was significantly lower during ventricular pacing than during pre-pacing and RA pacing.Our results show that RA and HB pacing results in less acute reduction on LV twist, rotation and LVESP compared to ventricular pacing.

Related Organizations
Keywords

Male, Science, Q, R, Cardiac Pacing, Artificial, Hemodynamics, Reproducibility of Results, Blood Pressure, Heart, Ventricular Function, Left, Dogs, Echocardiography, Aortic Valve, Fluoroscopy, Medicine, Animals, Female, Aorta, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold