Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological and Pharm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biological and Pharmaceutical Bulletin
Article . 2005 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advances in the Cell Biology of Transport via the Inner Blood-Retinal Barrier: Establishment of Cell Lines and Transport Functions

Authors: Ken-ichi, Hosoya; Masatoshi, Tomi;

Advances in the Cell Biology of Transport via the Inner Blood-Retinal Barrier: Establishment of Cell Lines and Transport Functions

Abstract

The retinal capillary endothelial cells are connected to each other by tight junctions that play a key role in permeability as the inner blood-retinal barrier (inner BRB). Thus, understanding the inner BRB transport mechanism is an important step towards drug targeting of the retina. Nevertheless, inner BRB transport studies have been very limited in number since it is not easy to use the retinal capillaries, which are very small in size, for in vitro transport studies. Conditionally immortalized rat retinal capillary endothelial cells (TR-iBRB), pericytes (TR-rPCT) and Müller cell lines (TR-MUL) have been established from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines possess respective cell type markers and maintain certain in vivo functions. Using a combination of newly developed cell lines and in vivo studies, we have elucidated the mechanism whereby vitamin C, L-cystine, and creatine are supplied to the retina. TR-iBRB cells are also able to identify transporters and apply to study regulation of transporters under pathophysiological conditions. Furthermore, these cell lines permit the investigation of cell-to-cell interactions and the expression of inner BRB-specific genes between TR-iBRB and other cell lines.

Related Organizations
Keywords

Blood-Retinal Barrier, Animals, Endothelial Cells, Humans, Membrane Transport Proteins, Biological Transport, Retina, Cell Line

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 10%
gold