
doi: 10.1248/bpb.28.1
pmid: 15635153
The retinal capillary endothelial cells are connected to each other by tight junctions that play a key role in permeability as the inner blood-retinal barrier (inner BRB). Thus, understanding the inner BRB transport mechanism is an important step towards drug targeting of the retina. Nevertheless, inner BRB transport studies have been very limited in number since it is not easy to use the retinal capillaries, which are very small in size, for in vitro transport studies. Conditionally immortalized rat retinal capillary endothelial cells (TR-iBRB), pericytes (TR-rPCT) and Müller cell lines (TR-MUL) have been established from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines possess respective cell type markers and maintain certain in vivo functions. Using a combination of newly developed cell lines and in vivo studies, we have elucidated the mechanism whereby vitamin C, L-cystine, and creatine are supplied to the retina. TR-iBRB cells are also able to identify transporters and apply to study regulation of transporters under pathophysiological conditions. Furthermore, these cell lines permit the investigation of cell-to-cell interactions and the expression of inner BRB-specific genes between TR-iBRB and other cell lines.
Blood-Retinal Barrier, Animals, Endothelial Cells, Humans, Membrane Transport Proteins, Biological Transport, Retina, Cell Line
Blood-Retinal Barrier, Animals, Endothelial Cells, Humans, Membrane Transport Proteins, Biological Transport, Retina, Cell Line
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 125 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
