<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 14607778
The forkhead box (Fox) f1 transcription factor is expressed in the mouse splanchnic (visceral) mesoderm, which contributes to development of the liver, gallbladder, lung, and intestinal tract. Pulmonary hemorrhage and peripheral microvascular defects were found in approximately half of the newborn Foxf1(+/-) mice, which expressed low levels of lung Foxf1 mRNA [low- Foxf1(+/-) mice]. Microvascular development was normal in the surviving newborn high- Foxf1(+/-) mice, which compensated for pulmonary Foxf1 haploinsufficiency and expressed wild-type Foxf1 levels. To identify expression of genes regulated by Foxf1, we used Affymetrix microarrays to determine embryonic lung RNAs influenced by Foxf1 haploinsufficiency. Embryonic Foxf1(+/-) lungs exhibited diminished expression of hepatocyte growth factor receptor c-Met, myosin VI, the transcription factors SP-3, BMI-1, ATF-2, and glucocorticoid receptor, and cell cycle inhibitors p53, p21Cip1, retinoblastoma, and p107. Furthermore, Notch-2 signaling was decreased in embryonic Foxf1(+/-) lungs, as evidenced by significantly reduced levels of the Notch-2 receptor and the Notch-2 downstream target hairy enhancer of split-1. The severity of the Notch-2-signaling defect in 18-day postcoitus Foxf1(+/-) lungs correlated with Foxf1 mRNA levels. Disruption of pulmonary Notch-2 signaling continued in newborn low- Foxf1(+/-) mice, which died of lung hemorrhage and failed to compensate for Foxf1 haploinsufficiency. In contrast, in newborn high- Foxf1(+/-) lungs, Notch-2 signaling was restored to the level found in wild-type mice, which was associated with normal microvascular formation and survival. Foxf1 haploinsufficiency disrupted pulmonary expression of genes in the Notch-2-signaling pathway and resulted in abnormal development of lung microvasculature.
Cyclin-Dependent Kinase Inhibitor p21, Osteosarcoma, Microcirculation, Gene Expression Regulation, Developmental, Nuclear Proteins, Forkhead Transcription Factors, Receptors, Cell Surface, Retinoblastoma-Like Protein p107, Retinoblastoma Protein, Mice, Mutant Strains, Mice, Cell Line, Tumor, Cyclins, Animals, Receptor, Notch2, Lung, Cell Division, Oligonucleotide Array Sequence Analysis, Signal Transduction, Transcription Factors
Cyclin-Dependent Kinase Inhibitor p21, Osteosarcoma, Microcirculation, Gene Expression Regulation, Developmental, Nuclear Proteins, Forkhead Transcription Factors, Receptors, Cell Surface, Retinoblastoma-Like Protein p107, Retinoblastoma Protein, Mice, Mutant Strains, Mice, Cell Line, Tumor, Cyclins, Animals, Receptor, Notch2, Lung, Cell Division, Oligonucleotide Array Sequence Analysis, Signal Transduction, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |