Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

The regulation of chemotaxis and chemokinesis in Dictyostelium amoebae by temporal signals and spatial gradients of cyclic AMP

Authors: M G, Vicker;

The regulation of chemotaxis and chemokinesis in Dictyostelium amoebae by temporal signals and spatial gradients of cyclic AMP

Abstract

ABSTRACT The tactic and kinetic locomotion of Dictyostelium dis- coideum amoebae were examined in cyclic AMP (cAMP) spatial gradient and temporal signal fields. The distribu- tions of migrating cells were examined within 150 µm-thick micropore filters after incubation with different cAMP concentrations, [cAMP], applied in three ways across the fields: as positively or negatively developing gradients, generated either by increasing or decreasing the [cAMP] on one side of the filter, respectively, or as static, linear gradients after negative development. Chemotaxis was only induced by oriented, temporally increasing [cAMP]. Pulses propagated by molecular diffusion or mechanical flow were equally effective. Negatively developing cAMP gradients had no initial effect on cell accumulation. However, if the subsequent static spatial gradient was maintained by an infusion system, some gradients also induced cell accumu- lation, whose degree and direction depended on the gradient [cAMP]. The basis of this new effect was examined by tracking individual cells by computer-assisted videomi- croscopy during locomotion in different [cAMP]. Cells produced a triphasic [cAMP]-dependent response, with optimal cell motility induced by 10-30 nM. The results demonstrate that cell accumulation either up-field or down-field in spatial gradients is governed by the field locations of the attractant concentrations that induce the relative locomotory maxima and minima in the gradient field. Cells perceive the ambient [cAMP], but cannot read the spatial gradient orientation in static or yet steeper regions of developing gradients. Accumulation in static spatial gradients is a function of klino- and orthokinesis, but chemotaxis requires an oriented cAMP pulse or impulse. A mechanism of tactic signal perception is proposed in terms of the recently discovered intracellular oscillator, which determines cell shape and movement.

Related Organizations
Keywords

Cell Movement, Chemotaxis, Cyclic AMP, Animals, Dictyostelium, Adaptation, Physiological, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!