Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The International Journal Of Cell Cloning
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Therapeutic Efficacy and Fate of Bimodal Engineered Stem Cells in Malignant Brain Tumors

Authors: Jordi, Martinez-Quintanilla; Deepak, Bhere; Pedram, Heidari; Derek, He; Umar, Mahmood; Khalid, Shah;

Therapeutic Efficacy and Fate of Bimodal Engineered Stem Cells in Malignant Brain Tumors

Abstract

Abstract Therapeutically engineered stem cells (SC) are emerging as an effective tumor-targeted approach for different cancer types. However, the assessment of the long-term fate of therapeutic SC post-tumor treatment is critical if such promising therapies are to be translated into clinical practice. In this study, we have developed an efficient SC-based therapeutic strategy that simultaneously allows killing of tumor cells and assessment and eradication of SC after treatment of highly malignant glioblastoma multiforme (GBM). Mesenchymal stem cells (MSC) engineered to co-express the prodrug converting enzyme, herpes simplex virus thymidine kinase (HSV-TK) and a potent and secretable variant of tumor necrosis factor apoptosis-inducing ligand (S-TRAIL) induced caspase-mediated GBM cell death and showed selective MSC sensitization to the prodrug ganciclovir (GCV). A significant decrease in tumor growth and a subsequent increase in survival were observed when mice bearing highly aggressive GBM were treated with MSC coexpressing S-TRAIL and HSV-TK. Furthermore, the systemic administration of GCV post-tumor treatment selectively eliminated therapeutic MSC expressing HSV-TK in vitro and in vivo, which was monitored in real time by positron emission-computed tomography imaging using 18F-FHBG, a substrate for HSV-TK. These findings demonstrate the development and validation of a novel therapeutic strategy that has implications in translating SC-based therapies in cancer patients.

Keywords

Brain Neoplasms, Cell Survival, Apoptosis, Mesenchymal Stem Cells, Mesenchymal Stem Cell Transplantation, Thymidine Kinase, TNF-Related Apoptosis-Inducing Ligand, Mice, Cell Line, Tumor, Animals, Humans, Simplexvirus, Genetic Engineering, Glioblastoma, Ganciclovir

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 1%
hybrid