
The concept of q-rung orthopair fuzzy sets generalizes the notions of intuitionistic fuzzy sets and Pythagorean fuzzy sets to describe complicated uncertain information more effectively. Their most dominant attribute is that the sum of the \(q^{th}\) power of the truth-membership and the \(q^{th}\) power of the falsity-membership must be equal to or less than one, so they can broaden the space of uncertain data. This set can adjust the range of indication of decision data by changing the parameter \(q, ~q\geq 1\). In this paper, we define the Hamacher operations of q-rung orthopair fuzzy sets and proved some desirable properties of these operations, such as commutativity, idempotency, and monotonicity. Further, we proved De Morgan's laws for these operations over complement. Furthermore, we defined the Hamacher scalar multiplication \(({n._{h}}A)\) and Hamacher exponentiation \((A^{\wedge_{h}n})\) operations on q-rung orthopair fuzzy sets and investigated their algebraic properties. Finally, we defined the necessity and possibility operators based on q-rung orthopair fuzzy sets and some properties of Hamacher operations that are considered.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
