Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biotinylated m4-toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons

Authors: M P, Santiago; L T, Potter;

Biotinylated m4-toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons

Abstract

The striatum has nearly equal numbers of striatonigral and striatopallidal projection neurons. All are GABAergic and inhibitory, but they lie in separate neuronal circuits ('direct' and 'indirect', respectively) that appear to exert opposite effects on movement. Methods are needed to evaluate the function of each circuit. A potential way to control striatonigral neurons selectively is via M4 muscarinic receptors. The striatum has many more M4 receptors than other tissues, they are located on approximately half of all projection neurons, and mRNA for M4 receptors is prevalent only in striatonigral neurons. In order to more rigorously compare the distribution of M4 receptors on rat neurons in these pathways a toxin that binds with very high specificity to M4 receptors (m4-toxin) was biotinylated for use as a selective probe for M4 receptor protein. Pooled biotin-toxin complexes were found to retain high M4-specificity and affinity. Neurons were first labeled by retrograde transport of fluorescent microbeads (FluoSpheres) injected into the substantia nigra and globus pallidus. Coincident labeling of only 4% of the cells confirmed the validity of the retrograde labeling technique. Labeled neurons were probed for M4 receptor protein using biotinylated m4-toxin and fluorescent avidin. M4 receptors were found on 14% of indirect and 86% of direct neurons. It may be concluded that there is a relative abundance of M4 receptors controlling the direct pathway. This work supports the hypothesis that M4-selective drugs will prove useful to control the function of striatonigral neurons in the direct projection pathway.

Related Organizations
Keywords

Elapid Venoms, Male, Neurons, Receptor, Muscarinic M4, Neurotoxins, Parkinson Disease, CHO Cells, Receptors, Muscarinic, Corpus Striatum, Rats, Substantia Nigra, Cricetinae, Neural Pathways, Animals, Elapidae, Rats, Wistar

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!