
handle: 11449/169076
Agraïments: The first author is supported by FAPESP grant number 2013/24541-0 and CAPES grant number 88881.030454/2013-01 Program CSF-PVE and UNAB13-4E-1604. In this paper we deal with lanar piecewise linear differential systems defined in two zones. We consider the case when the two linear zones are angular sectors of angles and 2 - respectively, for (0,). We study the problem of determining lower bounds for the number of isolated periodic orbits in such systems using Melnikov functions. These limit cycles appear studying higher order piecewise linear perturbations of a linear center. It is proved that the maximum number of limit cycles that can appear up to a sixth order perturbation is five. Moreover, for these values of we prove the existence of systems with four limit cycles up to fifth order and, for =/2, we provide an explicit example with five up to sixth order. In general, the nonregular separation line increases the number of periodic orbits in comparison with the case where the two zones are separated by a straight line.
Nonregular separation line, 515, Limit cycle in Melnikov higher order perturbation, Non-smooth differential systems in two zones
Nonregular separation line, 515, Limit cycle in Melnikov higher order perturbation, Non-smooth differential systems in two zones
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
