Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification and Functional Characterization of Cytoplasmic Determinants of Plasmid DNA Nuclear Import

Authors: Munkonge, F; Amin, V; Hyde, S; Green, A; Pringle, I; Gill, DR; Smith, J; +13 Authors

Identification and Functional Characterization of Cytoplasmic Determinants of Plasmid DNA Nuclear Import

Abstract

Import of exogenous plasmid DNA (pDNA) into mammalian cell nuclei represents a key intracellular obstacle to efficient non-viral gene delivery. This includes access of the pDNA to the nuclei of non-dividing cells where the presence of an intact nuclear membrane is limiting for gene transfer. Here we identify, isolate, and characterize, cytoplasmic determinants of pDNA nuclear import into digitonin-permeabilized HeLa cells. Depletion of putative DNA-binding proteins, on the basis of their ability to bind immobilized pDNA, abolished pDNA nuclear import supporting the critical role of cytoplasmic factors in this process. Elution of pDNA-bound proteins, followed by two-dimensional sodium dodecyl polyacrylamide gel electrophoresis identified several candidate DNA shuttle proteins. We show that two of these, NM23-H2, a ubiquitous c-Myc transcription-activating nucleoside diphosphate kinase, and the core histone H2B can both reconstitute pDNA nuclear import. Further, we demonstrate a significant increase in gene transfer in non-dividing HeLa cells transiently transfected with pDNA containing binding sequences from two of the DNA shuttle proteins, NM23-H2 and the homeobox transcription factor Chx10. These data support the hypothesis that exogenous pDNA binds to cytoplasmic shuttle proteins and is then translocated to the nucleus using the minimal import machinery. Importantly, increasing the binding of pDNA to shuttle proteins by re-engineering reporter plasmids with shuttle binding sequences enhances gene transfer. Increasing the potential for exogenously added pDNA to bind intracellular transport cofactors may enhance the potency of non-viral gene transfer.

Keywords

Cell Extracts, Cell Nucleus, Homeodomain Proteins, Proteomics, Cytoplasm, Cell Membrane Permeability, Active Transport, Cell Nucleus, Proteins, Digitonin, DNA, NM23 Nucleoside Diphosphate Kinases, Transfection, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Humans, Electrophoresis, Gel, Two-Dimensional, HeLa Cells, Plasmids, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
gold