
pmid: 20494118
Apoptosis might proceed through the activation of both caspase-dependent and -independent pathways. Apoptosis-inducing factor (AIF) was discovered as the first protein that mediated caspase-independent cell death. Initially, it was regarded as a soluble protein residing in the intermembrane space of mitochondria, from where it could be exported to the nucleus to participate in large-scale DNA fragmentation and chromatin condensation. However, later it was demonstrated that AIF is N-terminally anchored to the inner mitochondrial membrane. Hence, AIF must be liberated from its membrane anchor prior to being released into the cytosol. The current knowledge about the molecular mechanisms regulating the processing and release of AIF from the mitochondria will be summarized and discussed in this review.
Mice, Animals, Apoptosis Inducing Factor, Humans, Apoptosis, Calcium, Reactive Oxygen Species, Mitochondria
Mice, Animals, Apoptosis Inducing Factor, Humans, Apoptosis, Calcium, Reactive Oxygen Species, Mitochondria
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 232 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
