Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamics of component exchange at PML nuclear bodies

Authors: Thorsten Lenser; Georg Schwanitz; Peter Dittrich; Dmitri Negorev; Stefanie Weidtkamp-Peters; Thomas G. Hofmann; Gerd G. Maul; +3 Authors

Dynamics of component exchange at PML nuclear bodies

Abstract

PML nuclear bodies (NBs) are involved in the regulation of key nuclear pathways but their biochemical function in nuclear metabolism is unknown. In this study PML NB assembly dynamics were assessed by live cell imaging and mathematic modeling of its major component parts. We show that all six nuclear PML isoforms exhibit individual exchange rates at NBs and identify PML V as a scaffold subunit. SP100 exchanges at least five times faster at NBs than PML proteins. Turnover dynamics of PML and SP100 at NBs is modulated by SUMOylation. Exchange is not temperature-dependent but depletion of cellular ATP levels induces protein immobilization at NBs. The PML-RARα oncogene exhibits a strong NB retention effect on wild-type PML proteins. HIPK2 requires an active kinase for PML NB targeting and elevated levels of PML IV increase its residence time. DAXX and BLM turn over rapidly and completely at PML NBs within seconds. These findings provide a kinetics model for factor exchange at PML NBs and highlight potential mechanisms to regulate intranuclear trafficking of specific factors at these domains.

Keywords

Cell Nucleus, Oncogene Proteins, Fusion, Recombinant Fusion Proteins, Green Fluorescent Proteins, Intranuclear Inclusion Bodies, Nuclear Proteins, Antigens, Nuclear, Promyelocytic Leukemia Protein, Autoantigens, Models, Biological, Protein Structure, Tertiary, Diffusion, Kinetics, Protein Transport, Humans, Protein Isoforms, Protein Processing, Post-Translational, Cells, Cultured, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    180
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
180
Top 1%
Top 10%
Top 1%
hybrid
Related to Research communities
Cancer Research